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Reduction of enveloping algebras of low-rank groups? 
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Physics Department, McGill University, Montreal, Quebec, Canada 

Received 23 August 1979, in final form 2 January 1980 

Abstract. We find the generating function for group tensors contained in the enveloping 
algebra of each simple compact group of rank three or less. The generating function 
depends on dummy variables which carry, as exponents, the degrees and representation 
labels of the tensors; it suggests an integrity basis, a finite number of elementary tensors, in 
ierms of which all can be expressed as stretched tensor products. 

1. Introduction 

Much work has been done recently toward understanding the structure of the envelo- 
ping algebras (polynomials in the generators) of simple compact groups. 

It has long been known that for a group G of rank 1 there are just 1 independent 
invariant polynomials in the generators, or Casimir invariants (Samuelson 1941, Bore1 
and Chevalley 1955). Recently, simplified derivations of their eigenvalues have been 
given by Okubo (1977) and Edwards (1978). 

A theorem due to Kostant (1963) states that the number p A  of independent A 
tensors in the enveloping algebra is equal to the number of states of zero weight in the 
representation ( A )  (here ( A )  is any irreducible representation other than the scalar one). 
Kostant also shows that the highest degree of a A tensor (modulo multiplying it by 
Casimir operators) is the sum of the coefficients of the simple roots in the highest weight 
of ( A ) ;  in terms of the conventional (Cartan) labels A ,  this highest degree is as follows: 

SU(3): A i - t A 2 ,  O(5):  ?A1+2A2, 

(1.1) 3Al +SAL, SU(4): ?AIS 2A2+2A3, 3 G2: 

Sp(6): $ h I + 4 A 2 + q A 3 ,  O(7): 3A 1 4- 5 A 2  + 3 A 3 .  

In this paper we construct the generating function 9 for tensors in the enveloping 
algebra of each rank-two and rank-three group. 9 is a rational function of 1 + 1 dummy 
variables U, A i ,  . . . , Al. When it is expanded in a power series, 

(1.2) 

U carries the degree U and Ai carries the representation label A i  as exponents. A term 
UUcuAAA in (1.2) says that the number of A tensors of degree U is cUA. 

t Supported by the Natural Sciences and Engineering Research Council of Canada, and by the Ministere de 
1'Education du QuBbec. 
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The generating function does more than count the tensors. It suggests an integrity 
basis, a finite set of elementary tensors, in terms of which every tensor in the enveloping 
algebra can be expressed as a stretched product (representation labels additive). 

The generating function 9 is a fraction, or sum of fractions, whose denominator 
factors have the form 1 - X ;  the X and the numerator terms Y are products of powers 
of U and A,. The elementary tensors correspond to the X and to certain of the Y (the 
other Y, if any, are products of powers of the elementary tensors). Once the elementary 
X and Y are identified, it is straightforward, by standard methods, to determine the 
algebraic form of the tensors they denote. The absence of a particular product of 
elementary tensors implies a corresponding syzygy (relation) involving it. 

The number of labels needed to specify a particular term in the enveloping algebra is 
r, the order (number of generators) of the group 6. Subtracting :(r - I ) ,  the number of 
internal G labels (Racah 1951), we obtain $ ( r + I )  as the number of functionally 
independent elementary tensors; :(r + I )  is thus the (maximum) number of denominator 
factors in each term of %. 

Apart from its primary purpose-to decompose the enveloping algebra of a group 
G-our generating function has other uses. Without the denominator factors which 
correspond to Casimir invariants, and with U = 1, it is a generating function for the 
number of states of zero weight in representations of G. The generating function for the 
branching rules to a subgroup H = G may be substituted into our generating function to 
obtain a generating function for subgroup tensors in the enveloping algebra of the 
group; with the dummies carrying the subgroup representation labels set equal to zero, 
one obtains a generating function for subgroup scalars-labelling operators. The group 
generators are no longer independent when acting on restricted representations of 
G-say with some of the Cartan labels zero; the relations can be described as the 
vanishing of group tensors in the enveloping algebra and by the corresponding collapse 
of the generating function for tensors. 

In § 2 we describe the methods by which the generating functions may be deter- 
mined. In this connection the group-subgroup characteristic function is defined. 
Section 3 is devoted to the generating functions for SU(3) and 0 ( 5 ) ,  9 4 to SU(4) and 
GZ, and § 5 to Sp(6) and O(7). Section 6 describes the checks made on the generating 
functions. Section 7 contains some closing remarks. 

2. How the generating functions are determined 

In determining the generating function for tensors in the enveloping algebra of a group 
G, the operator properties of the generators may be ignored. Their order in a product 
does not affect its transformation properties under G, and in any case the commutation 
rules may be used to reduce any product to possibly lower-degree polynomials which 
are symmetric as to order. Symmetric polynomials correspond one-to-one to poly- 
nomials in c-number variables representing the generators. Hence our problem is to 
find the generating function for polynomial tensors in the components of a tensor which 
transforms by the adjoint representation of G. 

Gaskell et a1 (1978) (we will refer to this paper as I) describe a general method for 
constructing the generating function for polynomial tensors based on any tensor of a 
compact group G. Although it is directly applicable to our problem, the tedium of the 
method increases rapidly with the number of generators. There are two devices for 
simplifying the work, each of more or less general applicability. The first makes use of a 
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larger group G‘ in the chain SU(r) 2 G’ 2 G (r is the order of G); the second involves 
working through a subgroup H of G. A special relationship between the enveloping 
algebras of Gz and SU(4) allows the calculation of the former’s generating function 
from the latter’s; the connection is explained in Q 4. 

The tensors of degree U in the generators of G are precisely the multiplets contained 
in the representation ( u 0  . . . 0) of SU(r). Hence the generating function (1.2) is that for 
the branching rules SU(r) 2 G, restricted to one-rowed representations of SU(r). The 
calculation is simplified if a group G’ can be inserted in the chain SU(r) 3 G’ 3 G. One 
finds the generating functions for SU(r) 2 G‘ and for G’ 3 G and substitutes the latter in 
the former. Thus for O(5) one may use the chain SU(10) 3 SU(5) 3 O(5); the embed- 
ding is such that (10 . .  . 0) of SU(10) contains (0100) of SU(5) which contains (20) of 
O(5). An alternative chain is SU(10) 2 SU(4) 2 O(5) with the embedding (10 . . . 0) 2 

(200) 2 (20). Similarly for SU(4) the chain SU(15) 3 SU(6) 2 SU(4) is available with the 
embedding (10 . . . 0) 3 (01000) 2 (101). For O(7) one may use SU(21) 2 SU(7) 2 O(7) 
with (10 . . - 0 )  3 (010000) 2 (010). For Sp(6) there is SU(21) 3 SU(6) 3 Sp(6) with 
(10 . . . 0) 2 (20000) 3 (200). The generating functions for the relevant group-sub- 
group branching rules are described in 0 0  3,4 and 5 .  The procedure for substituting one 
in another is detailed by Patera and Sharp (1980). 

The alternative approach is to work through a subgroup H of G. The generators of 
G form a reducible tensor of H. It may be relatively easy to construct the generating 
function for polynomial H tensors in the components of that reducible tensor. Under 
certain circumstances it may be possible to convert that generating function into the 
corresponding (and desired) generating function for G tensors. A necessary tool in 
converting a generating function for subgroup tensors into the corresponding generat- 
ing function for group tensors is the group-subgroup characteristic function, to which 
the remainder of this section is devoted. 

The group-subgroup characteristic function is a generalisation of Weyl’s (1925) 
characteristic function, to which it reduces when the subgroup is the Cartan subgroup, 
U(1) x . . . x U(1) (1  times), whose representation labels are the components of the 
weight. Apart from its role in converting subgroup to group generating functions, it is 
useful as a way of presenting branching rules. 

Let G be a simple compact group and H its semisimple or reductive subgroup. The 
subgroup content of an irreducible representation ( A )  of G may be written 

( v )  = (vl, . . . , vlH) are the representation labels of H, and N are dummy variables 
carrying those labels as exponents; cAV is the multiplicity of the subgroup representation 
( v )  in the group representation ( A ) .  

In the Appendix, the group-subgroup characteristic e? (N) is defined, and it is 
proved that in terms of it the subgroup content may be written 

5: (N) may be evaluated straightforwardly from its definition ( A l )  in each case of 
interest. In principle 8: ( N )  may also be evaluated from the definition; however, it may 
be easier to evaluate x?(N) in the form (2.2) from the generating function for G 2 H 
branching rules, if it is known, and read off 6: ( N ) .  We give explicit examples. 
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The group-subgroup generating function for SU(3) 2 SU(2) x U(1) is known to be 
(Sharp and Lam 1969) 

S( -4 1,112 ; Nj , N2) = [( 1 - ‘4 I N1 N2) ( 1 -- A 1 Ni2 ) ( 1 - AzNi  N ;  ) ( 1 - A2N; )I- (2.3) 

where A I ,  i i 2  carry the SU(3) representation labels as exponents, NI carries twice the 
isospin, and N2 three times the hypercharge. The SIJ(2) x U(1) content of the SU(3) 
representation ( A l ,  A 2 )  is the coefficient of h: ’A;2  in the expansion of (2.3); this can be 
evaluated by taking appropriate residues of (2.3): 

( 2 . 5 ~ )  

(2.56) 

The .I1, A2 residues in (2.4) are those at poles inside circles a little greater than unity in 
radius; IN1/ is small compared with unity, and IN2] equal to unity. 

Similarly, from the SU(3) 3 O(3) generating function 

F(h1, 112; N ) = ( l  + A ~ i ~ ~ N ) [ ( l - A l N ) ( l - ~ ~ ~ ) ( l - h 2 N ) ( l - A ~ ) ] - ’ ,  

we find the SU(3) 2 O(3) characteristic function 

S(Al, A 2 )  is unity if A I ,  A 2  are both even, and zero otherwise. N carries the angular 
momentum quantum number as exponent. 

From the O(5)  2 SIJ(2) x SU(2) generating function 

From the G2 13 StJ(3) generating function (Sharp and Lam 1969, and I) 

9 ( A i 7  1 1 2 ;  iV2) 

=[(1 -A1N1)(1 --AlN2)(1 -A2N1)(1 -A2iV2)].-’ 

X ((1 -AI)--’ + AZN1N2(1-_ AZN~N~)- .~},  
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we find the G2 =) SU(3) characteristic function 

( ~ ' I A z  (N1, N 2 )  

- - Nt2 t1N:1+A2+Z - N~1+A2t2Ni2t1 + N42+' 

-Ntzfl +NA,tA2+2 1 -N$1'A2t2 , ( 2 . 9 ~ )  

#o (NI, N2) = (N2 - Ni)(Ni - 1)(N2 - 1). (2.9b) 

We now turn to the problem of converting a generating function for subgroup 
tensors into the corresponding generating function for group tensors. The group- 
subgroup characteristic function t f : ( N )  is a linear combination of terms II, N?, whose 
exponents p ,  depend linearly on the A , ;  the dummies N, are defined so that the 
coefficients of the A,  are all integers. Pick out one term of 6: ( N )  and represent it by the 
point in lH-dimensional space whose Cartesian components are its exponents p , .  
Associated with the term is the sector in which its point lies when the representation 
labels A, take all possible values. To be useful for our present purpose ( { ' (N)  should 
contain a term--to be called the distinctive term-which satisfies two criteria. Its sector 
should not be overlapped by the sector of any other term, and its exponents pt must 
determine the representation labels A,. For S U ( 3 ) 3 0 ( 3 )  or any pair in which the 
subgroup has lower rank than the group, the group-subgroup characteristic function 
contains no distinctive term. But for all group--subgroup pairs which we have examined 
with 1H = IC;, including SU(3) 3 SU(2) x U(1), 0 ( 5 )  3 SU(2) x SU(2), SU(4) 3 SU(3) x 
U(1), G2 3 SU(3), G 2  3 0(4), the group-subgroup characteristic contains at least one 
distinctive term; we conjecture that this is the case whenever I H  = I C .  The distinctive 
term is the first term on the right-hand side of each of equations ( 2 . 5 ~ ) .  ( 2 . 7 ~ )  and 
(2.9a). 

Consider a generating function 9 ( N )  for tensors of the subgroup 14 of a group (3. 
We assume that the tensors are those contained in complete tensors of G and write 

(2.10) 

where , y? (N)  is the subgroup content of the irreducible representation ( A )  of G (see 
equation (2.1)); cA is the multiplicity of ( A )  in 9, and may depend on other dummy 
variables such as U in (1.2). Multiply (2.10) by ( ? ( N ) ;  because of (2.2) we obtain 

( N ) P ( N )  k? (N1C.i. (2.11) 

We now assume that the criterion of the preceding paragraph is satisfied by G 3 H. 
Multiply (2.11) by I1, N ;  II, A;] and sum over A,  from 0 to CO; the sums are 
geometric and may be done explicitly. Finally add all residues at poles of N1,.  . . , Ni 
inside their unit circles. The result is the desired generating function %(A) for G tensors. 
Examples of the procedure for SU(3) 3 SU(2) x U(1) and O(5) 3 SU(2) x SU(2) are 
given in 8 3. 

3. SU(3) and O(5) 

Before dealing with the two classical rank-two groups SU(3) and 0 ( 5 ) ,  we dispose of the 
rank-one group SU(2). The generating function for tensors in its enveloping algebra is 

%(U, A) == [(l- U2)(1 - Z7A)I-l. (3.1) 
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The integrity basis, which is well known, consists of two elements, a second-degree 
scalar and a first-degree vector, indicated in the generating function by U' and U A  
respectively. The scalar is the SU(2) Casimir invariant. Any SU(2) tensor in the 
enveloping algebra is a stretched power of the vector multiplied by a power of the scalar. 

To find the generating function for tensors in the enveloping algebra of SU(3), we 
make use of the SU(2) x U ( l )  subgroup. 

The generators of SU(3) decompose under SU(2) x U(l )  into a vector and scalar 
with U(1) labels 0 and two spinors with U ( l )  labels *3. The generating function for 
SU(2) x U ( l )  tensors based on the vector and scalar is, by (3.1), 

9 1 ( U , N ; ) = [ ( l - U ) ( 1 -  U2)(1- UN':)]-'. (3.2) 
The factor (1 - U)-' takes account of the scalar. The exponent of N ; ,  to avoid 
fractional exponents later, is twice the isospin. The generating function based on the 
spinors is ( N 2  carries the U(1) label) 

9 * ( U ,  Ny, N2) = [(l-  U2)(1 - U N ; N ; ) ( l -  UN;N;3)]-1.  (3.3) 

The isospins of the generating functions (3.2) and (3.3) must be coupled (Patera and 
Sharp 1980) with the help of the SU(2) Clebsch-Gordan generating function 

(3.4) 

to obtain the generating function for SU(2) x U ( l )  tensors in the SU(3) enveloping 
algebra: 

9 3  (U, N1, N2) 
= 

C ( N ; ,  NY, NI) = [(l - N { N Y ) ( l  -N{N1)(1 -N;N1)]-l 

ResNjNIN;-lN;-l.Fl( U, N;-' )F2( U, IVY-', N 2 ) C ( N ; ,  NY, N1) 
= [(I - u)(i - v2)(i - U ~ N ;  )(i - u 3 ~ i 6  )(i - UN& )(I - U N ~ N ; ~  )]-I 

(3.5) x [(I - UN? )-](I + U ~ N ~ N :  ) ( I  + u ~ N ~ N ; ~ )  + (1 - U)-' U']. 

Following the prescription of the preceding section, we multiply (3.5) by 

( N 1 N 2 - N ; ' ) ( N :  -N1N;1)N;2N:  [(l- AIN:)(l -A2NT1N2)]-' 

and take residues with respect to N I  and N2. The result is the desired generating 
function for tensors in the SU(3) enveloping algebra: 

% ( U ;  A I ,  122) 

1 1 U3A;  ( 3 3 +  
- - 

(1 - U2)(1 - U3)(1 - UAlA2)(1- U2A1A2) 1 - U A I  1 - U3A;)  
4 2 2  

- - 1 + U 2 A l A 2 +  U h l A 2  
(1 - U2)(1 - U3)(l  - UA1A2)(1 - U3A:)(l - U3A:)'  (3.6) 

U carries the degree, and A l ,  A2 carry the SU(3) representation labels of the tensors. 
The generating function (3.6) is given in I and a corresponding integrity basis by Sharp 
(1975), in each case without details of the derivation. 

The integrity basis suggested by (3.6) consists of the quadratic and cubic Casimir 
invariants (U2 ,  U 3 ) ,  two octets of degrees 1 and 2 ( U A l A 2 ,  U2AlA2)and a decuplet 
( U3A:) and antidecuplet ( U3A:)  each of degree 3. A syzygy, indicated symbolically by 

(3.7) ( U3A:)( U3A:) + ( U2AlA2)3 + ( U2A1A2)(  UAlA2)2U2 + ( U A ~ A Z ) ~ U ~  = 0 ,  
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means that ( U3A:)( U3A:)  or ( U2hlA2)3 is redundant and should be discarded. The 
two options correspond to the two forms (3.6) of the generating function (other 
equivalent forms are also possible). 

There are several checks that can be applied to the generating function (3.6), and to 
the analogous generating functions to be derived in this paper; the checks are discussed 
in § 6 .  

The generating function for tensors in the O(5) enveloping algebra can be evaluated 
in an analogous manner, using its subgroup SU(2)XSU(2). The O(5) generators 
decompose under SU(2) x SU(2) into a (1, 1) quartet and the SU(2) x SU(2) generators 
(2, 0) and (0,2). It is straightforward, though laborious, to construct the generating 
function 9( U ;  N1, N2)  for SU(2) x SU(2) tensors based on this reducible tensor. Using 
the O(5) 3 SU(2) x SU(2) characteristic function (2.7), we find the desired O(5) 
generating function 

1 + u4'11:h2 
% ( U ;  AI, ,112) (1 - U2)(1 - U4)( l  - UA:)(l- U2A2)(1 - U2A:)(1 - U3A:)'  (3.8) 

U carries the degree, and A i ,  A2 carry the O(5)  representation labels of the tensors. The 
integrity basis consists of the quadratic and quartic Casimir invariants ( U 2 ,  U'), two 
decuplets of degrees 1 and 3 (UA: ,  U3A:), a quintet ( U2A2) and 14-plet ( U2A:) each 
of degree 2, and a 35-plet ( U4A?A2) of degree 4. The (stretched) square of the 35-plet 
is redundant. 

Alternative derivations of (3.8) make use of the chain SU(10) 2 SU(5) 2 0 ( 5 ) ,  or 
SU(10) 3 SU(4) 2 O(5).  The SU(10) 2 SU(5) generating function, for one-rowed 
representations of SU(lO), is [(l- UM2)(1 - U2M4)]-', where U carries the SU(10) 
label (the degree) and M2, M4 carry the second and fourth SU(5) labels. Hence, if 
$(MI, M2, M3,  M4; Ai,  A2) is the generating function for SU(5) 3 O(5) branching 
rules, we see that 

% ( U ;  Ai ,  A2) =9(0, U, 0, U 2 ;  A i ,  112) (3.9) 

is the desired generating function for tensors in the O(5) enveloping algebra. The 
generating function 9 for SU(5) 3 O(5) branching rules is given by Patera and Sharp 
(1980) and gives a %(U;Al,  A2), in agreement with (3.8). The SU(10)3SU(4)  
generating function, for one-rowed representations of SU(lO), is [(l- UM:)(1- 
U2M:)(1 - U3Mt)(1 - U')]-', where U carries the SU(10) label (the degree) and MI, 
M2,  M3 carry the SU(4) labels. Hence, if 9 ' ( M : ,  M i ,  M :  ; Ai,  A2) is the part of the 
SU(4) 3 O(5) generating function which is even in all the SU(4) labels, we see that 

% ( U ;  A i ,  A 2 ) = ( 1 -  U4)-'Sl(U, U 2 ,  U 3 ;  A i ,  A2) (3.10) 

is the desired generating function (3.8) for tensors in the O(5) enveloping algebra. The 
generating function for SU(4) 3 O(5) branching rules is given by Patera and Sharp 
(1980). 

4. SU(4) and Gz 

The generating function for tensors in the enveloping algebra of SU(4) could be 
evaluated by using the SU(3) x U(1) subgroup and the methods of the preceding 
section. We found it easier to use the chain SU(15) 1 SU(6) 2 SU(4). 
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The SU(15) 3 SU(6) generating function, for one-rowed representations of SU(15), 
is [ ( l  - UM2)(1 - U2M4)(l - U3)]-l9 where U carries the SU(15) label, or degree, and 
M2, M4 carry the second and fourth SU(6) labels. The StJ(6) 2 SU(4) generating 
function, for representations of SU(6) in which only the second and fourth labels are 
non-zero, is 

M2,  M4 carry the second and fourth SU(6) labels, and A I ,  A2, A3 the SU(4) labels. Hence 
the desired generating function for tensors in the SU(4) algebra is 

U carries the degree, and A I ,  112, A3 the SU(4) labels of the tensors. 
Inspection of (4.2) suggests an integrity basis with 17 elements (the notation is 

(pabc),  where p is the degree and a,  b, c the SU(4) labels): (2000), (3000), (4000), 
(1101), (2101), (2020), (4020), (3101), (3210), (3012), (4210), (4012), (5210), (5012), 
(6121), (6400), (6004). Because of syzygies, the following products of elementary 
tensors should be eliminated: (3101) with (3210), (3012); (3210) with (3012), (4012), 
(5012), (6121), (6004); (3012) with (4210), (5210), (6121), (6400); (4210) with (4012), 
(5012), (6121), (6004); (4012) with (5210), (6121), (6400); (5210) with (5012), (6121), 
(6004); (5012) with (6121), (6400); (6121) with (6400), (6004); (6400) with (6004); the 
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squaresof (4210), (4012), (5210), (5012), (6121); the products (3101)(4210)(5210) and 
(3 10 1)(4012)( 50 12). 

The generating function for tensors in the enveloping algebra of G2 could be 
evaluated with the use of the SU(3) subgroup. However, it proves simpler to obtain it 
by exploiting an interesting relationship between the groups SU(4) and GZ based on the 
fact that the subgroup SU(3) is embedded similarly in the two groups. 

With the help of the SU(4) 3 SU(3) generating function 

.F(n 1, A2, As ; N I ,  iV2) = [( 1 - A I ) (  1 - AlN1)( 1 -- AzN1)( 1 - A2N2)( 1 - A&z)( 1 - A3)]-l, 

(4.3) 

( A l ,  A2, .A3 carry the SU(4) labels, and N1, N2 the SU(3) labels) a generating function 
%(Al,  A2, A3) for SU(4) tensors may be converted into a generating function 

$(Nl, N*)  = [(l - N d 1  -N2)(N1 -Nz)l-l(~;Nz%'(N1, N1, N2) 

-N1Nf%(NI, N2,Nz) -N;%?(Ni,N1, l )+N:X(l ,N2,N2) 

+Nl%'( l ,Nl ,  1)-N22(1,N2,  I ) +  Nl~Z%'(Nl,N2,1) 

- NINZ%'Ye(l, N1, NZ)! (4.4) 

for SU(3) tensors. 

Y{(A1, '42) for Gz tensors into the generating function 
Similarly the GZ 3 SU(3) generating function (2.8) converts a generating function 

2(N1, A'*)=[(l -N1)(1 -Nz)(N1-N,)]-'(N,2YC(Nz, NZ) 

- N : X ( N i ,  N I )  + N:N2YC(Ni, NiNz) - NiNiYC(N2, N1N2) 

+ N1 Yl( 1, NI) - N2.7l( 1, Nz)) (4.5) 

for SU(3) tensors. 
Now suppose that the SU(4) generating function %(Al, hZ, A3) and the Gz. generat- 

ing function Yt(Al ,  ,Iz) are related by the fact that they generate the same SU(3) tensors. 
It follows from (4.4) and (4.5) that they are related by the functional equation 

N:rC(Nz, N2) - N?YC(N,, N,)  +N?NZYC(N,, NlN2) 

- NlN;YC(N>, N1N2) + N l Y t (  1, N I )  - NZYC( 1, NL) 

= N ~ N ~ W N ,  N,,  - N ~ N ~ ~ W N , ,  N ~ ,  N ~ )  

-N?g(Ni, NI, 1)+N:2(1, N2, N2) tNix(1,  NI, 1) 

-Nz%(l, Nz, 1)+NiNzR(Ni, Nz, ~ ) - N I N Z % ' ( ~ ?  NI, Nz). (4.6) 

Under the assumption that %(Al, A2, ,A3) is symmetric in its first and last arguments, 
%'(Al, .I2, A3) = %'(A3, Az, A l ) ,  it can be verified that a formal solution of (4.6) for 
YC(h l ,  '22) is 

YC(A1,Az) = '21, A z , f A l l ) + A T I X ( A 1 ,  -A;?/hi, 1). (4.7) 

The solution (4.7) suffers from the defect that its expansion contains, in general, 
negative powers of A l .  These can be eliminated by adding to YC(A,, A2) an appropriate 
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solution of the homogeneous version of (4.6). It can be verified that, for any A I ,  A 2 ,  

satisfies the homogeneous equation. Thus we have the following prescription for the 
solution of (4.6) for YL(Al, ,A2) which contains no negative powers: expand the right- 
hand side of (4.7) in powers of A l  and replace each negative power A;h1(A122) by 
-A: I - ~ A ; ~  1 + I  ; drop terms in 11;'. Because of the form (4.7) this cannot introduce 
negative powers of A2. The prescription can be formulated in terms of residues: 

(4.8) 

The first term, (A: - A')-', in the first square bracket picks out the positive power part in 
hl; the second, Ai(h2 - Alll;)-', replaces negative powers AYA1 by -A:1-2h;h1-t1 and 
cancels A;'. 

Now the generators of G2 decompose under SU(3) into an octet, a triplet and an 
antitriplet, the same as SU(4), except that the SU(4) generators contain an additional 
scalar. It follows that, if (1 - U ) % ( U ;  A l ,  A2, A3),  where % ( U ;  hl, 112, 113) is given by 
(4.2), is substituted for %?(A1, A2, A3) in (4.8), the result will be the desired generating 
functions for tensors in the GZ enveloping algebra: 

% ( U ;  A i ,  A21 

4 2 - 1  = [(l- U2)(1 - U6)(1 - Uh2)(1  - U211:)(1 - U3A1)(l - U 11211 

U carries the degree, and A,,  A2 carry the G2 representation labels of the tensors. 
The integrity basis implied by (4.9) consists of 17 elements (the notation is (pub) ,  

where p is the degree and a, b the G2 labels): (200), (600), (101), (220), (310), (330), 
(402), (420), (501), (511), (531), (630), (621), (711), (802), (912), (12,03). The 
following products of elementary tensors should not be used: the square or product of 
any two of (531), (630), (621), (511), (7111, (912), (12,03); the product of (330) with 
(802), (621), (711), (511), (912), (12,03); of (420) with (802), (511), (912), (12,03); of 
(501) with (531), (630); of (802) with (531), (630), (621), (711); and the product 
( 330)2( 50 1)'. 

5. Sp(6) and O(7) 

The generating function for tensors in the enveloping algebra of Sp(6) is most easily 
determined with the help of the chain SU(21) 2 SU(6) 2 Sp(6) for one-rowed represen- 
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tations of SU(21). As mentioned in § 2, the insertions are defined by (10 . .  . 0) 2 
(20000) 2 (200). 

For one-rowed representations of SU(21) it is not hard to show that the SU(21) 2 
SIJ(6) branching rules are given by the generating function 

9(u; Mi, Mz, M3, M4, Ms) 
= [(I - u ~ ) ( I  - UM: )(I  - U ~ M ;  )(I - U~M: 10- U~M: xi- U ~ M :  rl. 

(5.1) 

U carries the SU(21) label (the degree), and M1, M z ,  M3, M4, MS carry the SU(6) labels. 
The generating function for SU(6) =I Sp(6) branching rules is of some interest in its 

own right. By examining low-lying representations of SU(6), we are led to the function 

MI, M z ,  M3, M4, MS carry the SU(6) and A l ,  Az, A3 the Sp(6) representation labels. 
The interpretation of (5.2) in terms of an integrity basis is straightforward, and omitted 
here; it can be found in Couture (1980). The integrity basis, which contains 15 
elements, defines SU(6) polynomial bases reduced according to the Sp(6) subgroup. 
While (5.2) has not been derived analytically, we are reasonably sure it is correct. For 
example the generating function for tensors in the Sp(6) enveloping algebra, derived 
from it, has been subjected to the checks described in § 6. 

The generating function X of (5.2) must be substituted into 9 of (5.1) to obtain the 
desired generating function % ( U ;  A,, Az, A3) for tensors in the Sp(6) enveloping 
algebra. The form of (5.1) indicates that only the part of (5.2) which is even in all SU(6) 
labels is required. Let X'(M?,  M:, M:, M i ,  M :  ; A i ,  Az, A3) be this even part; it is 
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The generating function for tensors in the enveloping algebra of O(7) is found with 
the help of the chain SU(21) 3 SU(7) 3 O(7) for one-rowed representations of SU(21); 
the insertions, as mentioned in Q 2, are defined by (10.  . . 0) 3 (010000) 3 (010). We 
found it useful to introduce the additional group SU(6) between SU(7) and O(7); the 
insertion is defined by (010000) 3 (10000) + (01000) with (10000) > (100) - (000) and 
(01000) > (010) - (100) + (000). O(7) is not a subgroup of SU(6), but may be subjoined 
to it (Patera and Sharp 1980). 

The generating function for SU(21) 3 SU(7) branching rules (one-rowed represen- 
tations) is 

9(u; K2,K4,K6)=[(1-UK2)(1-U2K4)(1--3Kg)]-1. (5.4) 

U carries the SU(21) label (the degree), while K2, K4 ,  K6 carry respectively the second, 
fourth and sixth SU(7) labels. Thus we need the generating function for SU(7) 3 O(7) 
branching rules only for SU(7) representations with the first, third and fifth labels zero. 
The generating function for SU(7) 3 SU(6) branching rules is (odd SU(7) labels zero) 

R(K2, K4, K6; Mi, M2, M3, M4, M5) 
= [( 1 - K2M1)( 1 - K2M2)( 1 - K4M3)( 1 - K4M4)( 1 - K6M5)( 1 - K6)l-I. 

( 5 . 5 )  

Hence, once the generating function $ ( M I ,  M2, M3, M4, M s ;  AI, 112, A3) for SU(6) > 
O(7) branching rules is known ( A l ,  A2, A3 carry the O(7) representation labels), the 
SU(7) 3 O(7) generating function is, according to ( 5 . 9 ,  

YC(K2, K4, K6; Ai,  A2, 1\31 = (1 - K J 1 $ ( K 2 ,  K2, K4, K4, K6; A i ,  A2, A d  (5.6) 

and, according to (5.4), the desired generating function for tensors in the enveloping 
algebra of O(7) is 

% ( U ;  A I ,  A2, A31 

= ?{(U, U’, U 3 ;  Ai,  112, A3) 

=( l -  U3)-’$(U, U, U’, U’, U 3 ;  A i ,  A2, A3). (5.7) 

For brevity the functions 2 and YC are omitted here; they can be found in Couture 
(1980). 

% ( U ;  A i ,  A2, A3) 

The result for %(U;  A I ,  h2, A3) is 

=[(1- U2)(1 - U4)(l - U6)(1 - UA2)(1- U2A:)(1 - U2A:)(1 - U3A1) 



The integrity basis corresponding to the generating function (5.3) is found in 
Couture (1980). 
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6. Testing the results 

In § 2 we discussed two methods of obtaining the generating function for tensors in the 
enveloping algebra of a group. The first (working through a subgroup) is an analytic 
derivation and constitutes a rigorous mathematical proof; this approach was used for 
SU(3) and O(5). The second approach, which makes use of a larger group, involves 
finding a set of elementary multiplets (the integrity basis) and relations among them 
(syzygies). It does not constitute a proof, since one is not sure that all elementary 
multiplets and relations have been found; in this case the result must be checked. 

Our generating functions satisfy the obvious requirements. There are 4(r  + I )  
denominator factors, including 1 which correspond to Casimir invariants; the highest 
degree with which any tensor appears is that prescribed by Kostant's (1963) theorem 
(1.1). Each generating function is consistent with known generating functions for 
subgroup scalars in the enveloping algebra. Indeed, the above checks were often 
helpful in determining the generating functions. 

The most conclusive check which we apply is the reduction of the generating 
function for tensors in the enveloping algebra to the corresponding generating function 
for weights. In what follows we use Sp(6) as an example. 

The generating function for tensors may be reduced to that for weights by substitut- 
ing the character generator of the group; unfortunately, the character generator is not 
known in general, so one must work through a chain of subgroups. For Sp(6) the 
following chain is convenient: 

Sp(6) 3 Sp(4) x SU(2) 3 SU(2) xU(1)  x SU(2) 3 U(l )  x U ( l )  x U(1). 

The generating function for branching rules at each stage is known. For Sp(6) 3 Sp(4) x 
SU(2) we have (Sharp 1970) 

[(I -AiNi)(1 -AiN3)(1 -kJW(l -h2)(1 - & N I ) ( ~  -&NZN~)I-~ 

X [(l -R2N1N3)-'+hih3N~(1-AlA3Nz)-1], (6.1) 

where AI ,  A2, h3 carry the Sp(6) labels, NI,  N2 the Sp(4) labels, and N3 carries the 
SU(2) label (the dimension of the SU(2) representation (v) is v + 1). The generating 
function for Sp(4) 3 SU(2) x U(1) is (Sharp and Lam 1969) 

where N4 carries the SU(2) label and q3 the U(1) label. The generating function for 
SU(2) = U(1) is 

[(I  -N77)(1 -N77-1)1-1, (6.3) 

where N carries the SU(2) label and 77 the U( 1) label (weight). Substitution of (6.1) into 
(5.3), of (6.2) into the result, and finally of (6.3) into that result, converts (5.3) into a 
generating function for weights in the Sp(6) enveloping algebra. But the actual 
generating function for weights is 

2 -2 [(l-u77:77:)(1-u?7:)(1-url;2t7~)(1-ur12r13 ) ( 1 - u ~ ~ 2 ~ ~ 2 )  
(1-u77;2)(1-u77:)(1-u77;2)(1-urj:)(l-u77;2)(1-ur11772t73) 
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(1 - U77177;1773)(1 - u77;'772773)(1- U77T177T1773)(1 - u77177277;1) 

x (1 - U77177;'77S1)(l - Uq;'77277S1)(1 - u77;177;1&)(l - U)']-'* 
(6.4) 

Each factor in (6.4) corresponds to a weight in the adjoint representation of Sp(6). 
The substitutions described above can, in principle, be done analytically, but the 

algebra soon gets out of hand. We have written a computer program which performs 
the substitutions numerically and compares the result with (6.4). The comparison can 
be made with high precision, for random values of the dummy variables on which the 
generating function depends. With quadruple precision the relative error was of order 

for Sp(6). To check the efficacy of the numerical comparison, we made minimal 
changes in the generating function being tested, such as altering by unity a coefficient or 
exponent; such a change increases the relative error by many orders of magnitude. 

The reduction of the generating function to that for weights must utilise a chain of 
groups of equal rank at each stage; otherwise information is lost. We applied similar 
numerical checks to all the generating functions in this paper. 

7. Discussion 

In this section we expand briefly on a few points mentioned in the introduction. 
First we illustrate how to find the algebraic form of the elementary tensors in the 

enveloping algebra, with S U ( 3 )  as an example. According to (3 .6)  the elementary 
tensors are (1, ll), (2,00), (2, l l ) ,  (3,00), ( 3 , 3 0 )  and ( 3 , 0 3 ) ;  the first number is the 
degree, the other two the representation labels of the tensor. We content ourselves with 
finding the highest weight component of each. For brevity we denote the components 
of the basic octet by letters, a = Il,t, f), p = 11, f, -f), y = 10, 1, l), S = 10, 1, O ) ,  E = 
1 0 ,  I , -I), e = 1 0 ,  0 ,  o), K = 1-1, f, t ) ,  A = 1-1 , 2 ,  -L 2>; the notation is 1 Y, T, To). For each 
elementary tensor, write the highest component as an unknown linear combination of 
those monomials in a , .  . . , A which have the necessary degree and weight. The 
coefficients are found by requiring that the generators corresponding to the simple roots 
annihilate the component. For S U ( 3 )  these simple generators are E12 and E23  in the 
notation of Gel'fand and Zetlin (1950); we adopt Gel'fand and Zetlin's matrixelements 
of E12 and EZ3 between the components of the octet. Then we find 

(1,11)--a, 
(2,oo) - a h  - p K  - YE +$s2+fe2 ,  
(2,11)-&S-&py+ae, 

( 3 , 3 0 ) - ~ y s + J 3 a ~ e - J Z a ~ K - J J 2 p y ~ ,  

(7.1) ( ~ , o o ) - J ~ ~ s A  + J ~ ~ S K - - J J ' ~ ~ A  --JJ'acK+ae~ -peK-s2e+2yg~+ie3,  

( 3 ,  0 3 ) - ~ ~ ~ + p ~ ~ - -  JTapy. 

The highest component of any tensor in the enveloping algebra is a product of powers of 
the elementary factors (7.1) ( ( 3 ,  30 )  and ( 3 , 0 3 )  should not appear in the same product). 

We turn to the question of subgroup scalars in the enveloping algebra of a group. 
Besides the Casimir operators of group and subgroup, there are r G - l G - y H - 1 H  

functionally independent subgroup scalars, or missing label operators (twice the 
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number actually needed to resolve the labelling problem (Peccia and Sharp 1976); rG, 
rH, lG, lH are the order and rank of group and subgroup. The generating function 
$?(U; A1, Az, . . .) for tensors in the enveloping algebra contains information about 
subgroup scalars. Substitute into $? the generating function 9 ( A 1 ,  hZ, . . .) for subgroup 
scalars in representations of the group; there results the generating function 2( U )  for 
subgroup scalars in the enveloping algebra. This substitution is often very simple to 
make. 

As a first example consider SU(3) 3 O(3); the generating function for O(3) scalars in 
SU(3) representations is 

9 ( A 1 ,  Az)=[(l-A?)(l-A:)]-', (7.2) 

obtained by setting equal to zero the dummy which carries the O(3) representation label 
in the SU(3) 3 O(3) branching rules generating function, given, for example, in 1. (7.2) 
states that each even-even representation of SU(3) contains one O(3) scalar. Substitu- 
tion of (7.2) in (3.6) means keeping the part of (3.6) even in R1 and in A2 and then setting 
RI  = Az = 1. The result is 

(7.3) X ( U )  -- (1 + u6)[(1 - m2(1 - u3)z(1 - u4)1-l, 
which agrees with the generating function of Judd ef a1 (1974) when their dummy 
variables D and P are set equal to U. 

Similarly, the generating function for SU(3) scalars in the GZ enveloping algebra is 
obtained from (4.9) by setting A2 = 0, Al = 1 ; that for SU(2) x SU(2) scalars in the SU(4) 
enveloping algebra is obtained from (4.2) by setting Az = 0, keeping the part even in A l  
and in A3 and setting ill = A3 = 1 ; that for SU(2) x U( 1) scalars in the O(5) enveloping 
algebra is found from (3.8) by keeping the part even in RI  and in A2 and setting 
AI = A2 = 1; that for GZ scalars in the O(7) enveloping algebra is obtained from (5.8) by 
setting A l  = Az = 0, A3 = 1. The resulting generating functions can be compared with 
the generating functions or integrity bases given, variously, by Quesne (1976), Sharp 
(1975), and in I. Many new generating functions for subgroup scalars could be found in 
this way, Of particular interest, because of its importance in nuclear physics, is the 
group-subgroup Sp(6) I) SU(3) x U(l)  (Rosensteel and Rowe 1977); the generating 
function for subgroup scalars is obtained from (5.3) by retaining the part even in R I ,  in 
Rz and in h3 and setting A I  = A2 = A3 = 1. 

Finally we touch on the collapse of the generating function for tensors in the 
enveloping algebra when the generators act only on restricted representations for which 
one or more Cartan labels vanish. We hope to do more work on higher groups, but here 
we report on SU(3) as a simple example. 

The generators, acting on states transforming by the special representations ( A  1 ,  0), 
are represented by simple differential operators. In the notation used earlier in this 
section we have 

Q +77 a,, P -+ 5 a,, Y + -77 a,, 8 + 2-lI2 (77 a, - 5 a*), 
(7.4) 

This approach was suggested by M Moshinsky (private communication). With these 
substitutions made in (7.1), and the operators all symmetrised as to ordering of 
generators, several relations appear between the generators. The elementary tensors 
(3,30) and (3,03) vanish. A linearly independent set of tensors in the enveloping 
algebra consists of the stretched tensor products (1,OO)"x (1, 1 l)b, where a and b are 

-+ 5 a,, e + 6-l" (-77 a,-5a,+25a,), K j - 5  a,, A -+ 5 a,. 
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any non-negative integers, except that a = 1, b = 0 is excluded. Thus the collapsed 
generating function is 

u3 +- 
1 - U’’ 

1 + u2hlh2 - U =  1 
(1 - U)(l-  UhiA2) (1 - U2)(1 - Uhlh2) 

(7.5) 

The scalar (1, 00), denoted in (7.5) by U, has as its eigenvalue the representation 
label A 1 .  Modulo multiplication by a scalar, the adjoint representation appears just 
once in (7.3,  of degree 1, in agreement with a result of Okubo (1977). 
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Appendix 

We define the group-subgroup characteristic function for the group-subgroup G 3 H a s  

The symbols in (Al )  must now be defined. 
c,,” is the multiplicity of the H representation v in the G representation A. 
q K u  means Hi  qjKv)i, where is the ith component of the vector 

K v = R +  W,;  (A21 
R is half the sum of the positive roots of H, and W, is the highest weight of the 
representation v. 

S 

is Weyl’s characteristic function for the scalar representation of H; the sum is over Weyl 
reflections S, and (-1)’ is the determinant of the matrix of S. 

Similarly A(T)  is Weyl’s characteristic function for the scalar representation of G in 
which (if necessary) a projection onto the weight space of H has been effected by 
substituting for the variables in terms of the 

The constructive definition (Al)  permits the evaluation of f ? ( v )  for any represen- 
tation A for which the branching multiplicities cAU are known. In particular, for the 
scalar representation, cop = Sov and 

appropriate to H. 

5oH(17) = A(17)17R/A’(17). (-44) 
Dividing (Al)  by (A4) we obtain 

If one substitutes for the variables 
result is equation (2.2). 

in terms of new variables N so that 17 wv = N u ,  the 
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We now discuss some properties of the group-subgroup characteristic function. 
First we sketch a proof that tY(7)  is a sum of monomials. Weyl(l926) shows that the 
vectors SR for any compact Lie group are possible weights of that group. After 
projection onto the weight space of a subgroup, they will be possible subgroup weights. 
From this it can be shown that A ( 7 )  is a linear combination of Weyl characteristic 
functions t y ( ~ )  of H, each of which is, of course, divisible by A’(7) .  Since A ( v ) / A ’ ( v )  is a 
sum of monomials, it follows from ( A l )  that t?(q) is also a sum of monomials. 

We can say something about the distribution of the terms of 4: (77) in weight space. 
From the form of ( A l )  it is clear that they lie in or near the dominant sector of H weight 
space, the sector of highest weights of H representations (the terms of A/A‘ are 
independent of A and cannot shift them far). Weyl’s (1926) characteristic function for 
the subgroup H is 

In terms of it the character function is 

The symbols are defined as in (A2) and (A3). There are similar equations for the group 
G .  From the additivity of the characters under the reduction G to H, 

and (A6), (A7) we obtain 

which incidentally suggests an efficient way of calculating branching rules (just divide SA 
by A/A’ and retain the part of the quotient in the dominant sector of subgroup weight 
space). Now the number of terms in SA (q) is fixed (independent of A 1, and they all lie 
equidistant from the origin of weight space, at least before projection onto H weight 
space; much cancellation occurs between the terms on the right-hand side of (A9). Now 
our group-subgroup characteristic function (Al )  differs from (A9) only in that it lacks 
the sum over Weyl reflections S implicit in the definition (A6) of SV(q) .  Hence most of 
the cancellation in (A9) persists, since the parts of (A9) coming from different sectors 
(under Weyl reflections of H) cannot cancel mutually except near the boundaries of the 
sectors, because of the small shifts due to A/A’. We can conclude that the terms of 
t ? ( q )  are either terms from &(7) which project into the dominant H sector, or else lie 
on or near the boundaries of the dominant H sector. 
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